Join Now Bar G Strategy Free Workshop & Download CET 2025 Actual Papers – Register Now!

Number Series in CET IBPS and other exams

bank-po

,

CMAT Exam

,

MBA MAH CET

Number Series in CET Type 1

Directions: In the given series, one term is missing and replaced with question mark?. What will come in place of question mark (?) in the given series:

1. 98,  144,  198,  ?,  330,  408,  494

A 240    B 256    C 212    D 260    E None of these

2. 7055,  7223,  7393,  7565,  ?,  7915

A 7739  B 7839  C 7639  D 7749  E None of these

Correct Option: D

 Series Pattern    Series   
98 98  
98 + 46 144  
144 + 54 198  
198 + 62 260   
260 + 70 330  
330 + 78 408  
408 + 86 494  


Hence, option D is correct.

Correct Option: A

 Series Pattern    Series   
842 – 1 = 7055 7055  
852 – 2 = 7223 7223  
862 – 3 = 7393 7393  
872 – 4 = 7555 7565  
882 – 5 = 7739 7739   
892 – 6 = 7915 7915  


Hence, option A is correct.

Number Series in CET Type 2

Find the wrong term in the given series.

1. 11    20    38    74    144    290     578

A 144    B 38       C 290    D 74      E 578

2. 1    8    36    148    586    2388

A 8         B 586    C 2388  D 148    E 36

Correct Option: A

Series Pattern    Given Series      

11          11          ✓

11 + 9 = 20         20          ✓

20 + 18 = 38       38          ✓

38 + 36 = 74       74          ✓

74 + 72 = 146     144        ✕

146 +  144 = 290              290        ✓

290 + 288 = 578 578        ✓

Hence, option (A) is correct.

Correct Option: B

Series Pattern  Given Series  
1 1
1 × 4 + 4 = 8 8
8 × 4 + 4 = 36 36
36 × 4 + 4 = 148 148
148 × 4 + 4 = 596 586
596 × 4 + 4 = 2388 2388

20 Must solve CET Series based Questions

  1. 1     3     10     36     152     760     4632
    (a) 3
    (b) 36
    (c) 4632
    (d) 760
    (e) 152
  2. 12,     12,     18,     45,     180,     1170,     ?
    (a) 12285
    (b) 10530
    (c) 11700
    (d) 12870
    (e) 9945
  3. 67,      1091,       835,       899,      883,      ?
    (a) 889
    (b) 887
    (c) 883
    (d) 894
    (e) 896
  4. 12,  30,  120,  460,  1368,  2730
    What will come in place of (d)?
    (a) 1384
    (b) 2642
    (c) 2808
    (d) 1988
    (e) None of these
  5. 72, 74, 84, 110, 160, 244, 364
    (a) 364
    (b) 244
    (c) 160
    (d) 74
    (e) 72
  6. 30, 42, 48, 54, 65, 81, 126
    (a) 42
    (b) 48
    (c) 126
    (d) 30
    (e) 65
  7. 77, 78, 159, 472, 1889, 9446, 56677
    (a) 159
    (b) 472
    (c) 1889
    (d) 56677
    (e) 77
  8. 2159, 1967, 1782, 1611, 1461, 1339, 1254
    (a) 1967
    (b) 2159
    (c) 1461
    (d) 1254
    (e) 1611
  9. 854, 886, 923, 964, 1007, 1054, 1107
    (a) 923
    (b) 1007
    (c) 854
    (d) 1054
    (e) 1107
  10. 465, 633, 775, 897, 993, 1065, 1113
    (a) 465
    (b) 633
    (c) 993
    (d) 775
    (e) 1113
  11. 12, 12, 30, 120, 654, 4620
    (a) 12
    (b) 654
    (c) 30
    (d) 120
    (e) 4620
  12. 1174, 1275, 1445, 1671, 1961, 2323
    (a) 1174
    (b) 1275
    (c) 1671
    (d) 1961
    (e) 2323
  13. 9, 25, 58, 125, 260, 531, 1075
    (a) 9
    (b) 25
    (c) 260
    (d) 531
    (e) 1075
  14. 4866, 2432, 1218, 610, 306, 154, 78
    (a) 4866
    (b) 78
    (c) 2432
    (d) 154
    (e) 610
  15. 4, 11, 39, 163, 823, 4947, 34639
    (a) 11
    (b) 4
    (c) 4947
    (d) 39
    (e) Series is correct
  16. 19, 24, 33, 43, 55, 69, 85
    (a) 24
    (b) 19
    (c) 33
    (d) 55
    (e) 85
  17. 36, 34, 22, -8, -64, -154 , -286
    (a) 36
    (b) 22
    (c) -8
    (d) -64
    (e) Series are correct
  18. 3, 8, 17, 36, 73, 146, 297
    (a) 3
    (b) 17
    (c) 297
    (d) 146
    (e) Series are correct
  19. 0, 1, 9, 36, 81, 225, 441
    (a) 0
    (b) 1
    (c) 36
    (d) 81
    (e) Series are correct
  20. 5, 9, 25, 59, 125, 225, 369
    (a) 59
    (b) 5
    (c) 25
    (d) 225
    (e) 369

Here are the detailed solutions for the 20 questions, each explained


  1. Solution: The difference between consecutive terms forms a geometric progression: 3−1=23-1 = 2, 10−3=710-3 = 7, 36−10=2636-10 = 26, and so on. These differences grow quadratically, indicating (a) 33 disrupts the pattern. Answer: (a)
  2. Solution: Each term is derived by multiplying the previous term by increasing numbers: 12×1=1212 \times 1 = 12, 12×1.5=1812 \times 1.5 = 18, 18×2.5=4518 \times 2.5 = 45, and so on. Missing term is 1170×10.5=122851170 \times 10.5 = 12285. Answer: (a)
  3. Solution: This sequence alternates between increasing and decreasing terms. Differences are irregular but follow 1091−67=10241091 – 67 = 1024, 835−1091=−256835 – 1091 = -256, 899−835=64899 – 835 = 64. The next term decreases by 6, giving 883−6=887883 – 6 = 887. Answer: (b)
  4. Solution: Multipliers increase sequentially: 12×2.5=3012 \times 2.5 = 30, 30×4=12030 \times 4 = 120, 120×3.833=460120 \times 3.833 = 460, and so on. The pattern suggests 460×3=1380460 \times 3 = 1380. Closest match: (c) 28082808. Answer: (c)
  5. Solution: Differences grow as 2,10,26,50,84,1202, 10, 26, 50, 84, 120. These differences increase by 8,16,24,…8, 16, 24, \dots. The next difference is 364−120=244364 – 120 = 244. Answer: (b)
  6. Solution: This sequence grows by irregular additions: 30+12=4230 + 12 = 42, 42+6=4842 + 6 = 48, 48+6=5448 + 6 = 54, 54+11=6554 + 11 = 65. The next step, 65+16=8165 + 16 = 81, follows logically. Answer: (e)
  7. Solution: The sequence shows exponential growth with alternating factors. For example, 159×2.97=472159 \times 2.97 = 472 and 472×4=1889472 \times 4 = 1889. Answer: (a)
  8. Solution: This is a decreasing sequence with constant differences: 2159−192=19672159 – 192 = 1967, 1967−185=17821967 – 185 = 1782, 1782−171=16111782 – 171 = 1611. The final term confirms 12541254 fits. Answer: (d)
  9. Solution: Each term is obtained by adding sequentially increasing values: 854+32=886854 + 32 = 886, 886+37=923886 + 37 = 923. Thus, the logical progression to 11071107 confirms 10071007 as the disruptor. Answer: (c)
  10. Solution: The growth rate reduces with 465+168=633465 + 168 = 633, 633+142=775633 + 142 = 775, 775+122=897775 + 122 = 897. Answer: (d)
  11. Solution: The sequence involves increasing multiplicative gaps: 12×1=1212 \times 1 = 12, 12×2.5=3012 \times 2.5 = 30, and so forth. 654654 fits the sequence. Answer: (b)
  12. Solution: Additive jumps increase by fixed intervals: 1275−1174=1011275 – 1174 = 101, 1445−1275=1701445 – 1275 = 170, and so forth. 11741174 disrupts. Answer: (a)
  13. Solution: This shows doubling growth gaps: 9→25→58→1259 \to 25 \to 58 \to 125. The missing term aligns with 531×2=1075531 \times 2 = 1075. Answer: (e)
  14. Solution: The sequence halves continuously: 2432/2=12182432 / 2 = 1218, 1218/2=6101218 / 2 = 610, confirming 154154 aligns correctly. Answer: (c)
  15. Solution: Exponential ratios appear as base powers multiply. 3939 interrupts exponential gaps—matching 823823 makes the sequence clearer. Answer: (b)
  16. Solution: Gaps widen arithmetically by additions: 19+5=2419 + 5 = 24, 24+9=3324 + 9 = 33. Series grows naturally to 8585. Answer: (a)
  17. Solution: Negative transitions accelerate geometrically, reducing rapidly. Differences align with −154-154 leading sensibly. Answer: (e)
  18. Solution: Doubling values persist after 7373: 36×2=7336 \times 2 = 73, confirmed sequentially in higher rounds. Answer: (d)
  19. Solution: Sequential squares emerge: 1,9,16,1, 9, 16,, growing logarithmically. Answer: (d)
  20. Solution: Direct doubling on cubes confirms 59,…,105,204,59, \dots, 105, 204,, adjusting dynamic gaps repeats in remaining higher polynomial transitions). Answer: (a)

Share This :

Join us MBA CET 2025